

Plano de Ensino

CAMPUS: Araxá
DISCIPLINA: Mecânica dos Sólidos
CÓDIGO: 04/7

Início: 1º Semestre/2025

Carga Horária: Total: 45 horas/aula Semanal: 03 aulas/aula Créditos: 03

Natureza: Teórica

Área de Formação - DCN: Específica

Competências/habilidades a serem desenvolvidas:

- C01: formular e conceber soluções desejáveis de engenharia, analisando e compreendendo os usuários dessas soluções e seu contexto;
- C02: analisar e compreender os fenômenos físicos e químicos por meio de modelos simbólicos, físicos e outros, verificados e validados por experimentação;
- C05: comunicar-se eficazmente nas formas escrita, oral e gráfica;
- C07: conhecer e aplicar com ética a legislação e os atos normativos no âmbito do exercício da profissão;
- C08: aprender de forma autônoma e lidar com situações e contextos complexos, atualizando-se em relação aos avanços da ciência, da tecnologia e aos desafios da inovação.
- C11: Operacionalizar e solucionar, de forma teórica e/ou experimental, os problemas no âmbito da Engenharia de Minas, por meio de métodos analíticos, algébricos, geométricos e cartográficos;
- C13: Planejar e realizar estudos de campo e testes laboratoriais e/ou industriais, analisar resultados e elaborar relatórios técnicos de avaliação dessas ações, de acordo com a metodologia científica:
- C15: Compreender e desenvolver aplicações computacionais para solucionar problemas e otimizar processos no âmbito da Engenharia de Minas.

Departamento que oferta a disciplina: DMCAX

Ementa: Conceitos de tensão e deformação (normal e de cisalhamento), segurança em projetos; propriedades mecânicas dos materiais; carregamentos axiais: princípio de Saint- Venant, deformações, elementos estruturais estaticamente indeterminados, efeitos térmicos, concentração de tensões; transformação de tensões e deformações específicas: estados plano e geral de tensões e deformações, tensões e deformações principais, tensão cisalhante máxima e planos principais; noções de torção.

Curso(s)	Período	Eixo	Obrigatória	Optativa
Engenharia de Minas	5°	Fundamentos da Engenharia	Х	

Plano de Ensino

INTERDISCIPLINARIDADES

Prerrequisitos: Estática; Cálculo com Funções de Várias Variáveis II
Correquisitos: não há

Obj	Objetivos: A disciplina deverá possibilitar ao estudante		
1	Desenvolver conceitos de Mecânica dos Sólidos e aplicá-los na abordagem e solução de problemas relacionados ao comportamento do sólido deformável.		
2	Relacionar as propriedades mecânicas dos materiais com os tipos de solicitação (tração/compressão/torção/flexão/cisalhamento) aos quais podem estar sujeitos;		
3	Desenvolver a análise crítica sobre as principais variáveis que influenciam na tensão e deformação de vigas e eixos.		
4	Avaliar os estados de tensão em condições de diferentes tipos de carregaments.		

Unidades de ensino		Carga-horária Horas/aula
1	Barras submetidas a carregamentos axiais: conceito de tensão e deformação normais. Relações constitutivas: lei de Hooke. Coeficiente de Poisson. Problemas hiperestáticos. Tensões térmicas. Variação volumétrica.	
2	Peças submetidas ao cisalhamento: conceito de tensão e deformação cisalhantes. Problemas de peças submetidas ao cisalhamento.	
3	Carregamento Axial ou Normal: Princípio de Saint-Venant, conceituação de esforço normal e deslocamento. Deformações, elementos estruturais estaticamente indeterminados, efeitos térmicos, concentração de tensões.	10
4	Transformação de tensões e deformações específicas: estados plano e geral de tensões e deformações, tensões e deformações principais, tensão cisalhante máxima e planos principais.	

Plano de Ensino

Torção: Conceituação de solicitação de torção, equação de equilíbrio para seções circulares, cheias ou vazadas; ângulo de torção dentro do regime elástico.	
Total	45

Plano de Ensino

Bib	Bibliografia Básica	
1	CRAIG, R. R. Mecânica dos materiais . Tradução de José Roberto Moraes d'Almeida, Sidnei Paciornik, Verônica Calado. 2. ed. Rio de Janeiro: LTC, 2003.	
2	HIBBELER, R. C. Resistência dos materiais . 7. ed. São Paulo: Pearson, 2010.	
3	GERE, J. M.; GOODNO, B. J. Mecânica dos materiais . Tradução de Luiz Fernando de Castro Paiva. 7. ed. São Paulo: Cengage Learning, 2014.	

Bibliografia Complementar	
1	BEER, F. P. <i>et al</i> . Mecânica dos materiais . 7. ed. São Paulo: McGraw-Hill, 2015.
2	BEER, F. P. et al. Estática e mecânica dos materiais. São Paulo: McGraw-Hill, 2013.
3	BOTELHO, M. H. C. Resistência dos materiais : para entender e gostar. 3. ed. São Paulo: Blucher, 2008.
4	NASH, W. A. Resistência dos materiais. 4. ed. São Paulo: McGraw-Hill, 2001.
5	PINHEIRO, A. C. F. B. Fundamentos de resistência dos materiais . Rio de Janeiro: LTC, 2016.
6	POPOV, E. P. Introdução à mecânica dos sólidos. São Paulo: Edgard Blucher, 1978.
7	PORTO, T. B. Mecânica dos sólidos : módulo 10: métodos de energia. Belo Horizonte: FUMARC, 2017.