

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

CAMPUS ARAXÁ

DISCIPLINA: Química Inorgânica CÓDIGO: G04QINO1.01

Início: 03/2023

Carga Horária: Total: 60 horas/aula Semanal: 04 aulas/aula Créditos: 04

Natureza: Teórica

Área de Formação - DCN: Básica

Competências/habilidades a serem desenvolvidas: C01, C02, C05

Departamento que oferta a disciplina: DFGAX

Ementa:

Orbitais moleculares; elementos representativos; elementos de transição; complexos dos metais de transição; termoquímica; eletroquímica: diagramas de Latimer e Frost; práticas laboratoriais.

Curso(s)	Período	Eixo	Obrigatória	Optativa
Engenharia de Minas	2°	Física e Química	X	

INTERDISCIPLINARIDADES

Prerrequisitos	
Química	
Correquisitos	
Não há.	

Objetivos: A disciplina deverá possibilitar ao estudante				
1	Descrever os fundamentos da química inorgânica.			
2	Caracterizar e descrever os principais compostos inorgânicos.			
3	Aplicar os conhecimentos da disciplina nas outras disciplinas do curso, em especial nas químicas posteriores e mineralogia.			
4	Incorporar terminologias e representações peculiares à química como instrumentos de comunicação profissional.			
5	Adquirir base científica para a compreensão e aplicação dos conhecimentos de química inorgânica na Engenharia de Minas.			

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

Unidades de ensino		Carga-horária Horas/aula
1	PERIODICIDADE QUÍMICA - REVISÂO: Raio atômico e raio iônico: tendências e anomalias; Carga nuclear efetiva (Zef) e blindagem; Regras de Slater para cálculo da carga nuclear efetiva; Energia de ionização; Afinidade eletrônica; Eletronegatividade; Polarizabilidade.	4
2	ORBITAIS ATÔMICOS – REVISÃO: Quantização da energia; Dualidade onda-partícula; Orbitais atômicos; Números quânticos.	4
3	ORBITAIS MOLECULARES E LIGAÇÃO QUÍMICA: A regra do octeto; Carga formal; Estados de oxidação; Comprimento e energia de ligação; Teoria dos orbitais moleculares; Propriedades das ligações; Geometria molecular.	10
4	A ESTRUTURA DOS SÓLIDOS SIMPLES: Células unitárias; Empacotamento; A estrutura dos metais e ligas; Sólidos iônicos; Entalpia de rede e ciclo de Born-Haber.	10
5	TERMOQUÍMICA E TERMODINÂMICA: Energias de reação; Calor de reação; Lei de Hess; Noções de variação de entropia (ΔS) e Energia Livre de Gibbs (ΔG); Processo Espontâneo e não espontâneo com base em valores de ΔG; Termodinâmica dos processos de solubilização de sólidos; Estabilidade térmica de sólidos.	6
6	ELETROQUÍMICA: Reações de óxido-redução – revisão; Equação de Nernst; Relação entre potencial padrão de redução e ΔG; Diagramas de Latimer; Diagramas de Ellingham; Diagramas de Frost; Diagramas de Pourbaix; Obtenção eletroquímica dos elementos.	12
7	OS ELEMENTOS REPRESENTATIVOS – BREVE VISÃO: PROPIEDADES, OBTENÇÃO, APLICAÇÕES E IMPORTÂNCIA ECONÔMICA: O hidrogênio; Elementos do grupo 1; Elementos do grupo 2; Elementos do grupo 13; Elementos do grupo 14; Elementos do grupo 15; Elementos do grupo 17; Elementos do grupo 18.	7
8	OS ELEMENTOS DE TRANSIÇÃO – BREVE VISÃO: PROPRIEDADES, OBTENÇÃO, APLICAÇÕES E IMPORTÂNCIA ECONÔMICA: Os metais do bloco d; Os metais do bloco f; Complexos dos metais do bloco d; Reações dos complexos.	7
	Total	60

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

Bibliografia Básica		
1	LEE, J. D. Química Inorgânica não tão concisa. 5. ed. São Paulo: Edgard Blucher, 1999.	
	KLEIN, C.; DUTROW, B.; Manual de ciência dos minerais. 23. ed. Porto Alegre: Bookman, 2012.	
3	SHRIVER, D. F.; ATKINS, P. W.; OVERTON, T. L.; ROURKE, J. P.; WELLER, M. T.; ARMSTRONG, F. A. Química inorgânica. 4. ed. Porto Alegre: Bookman, 2008.	

Bib	Bibliografia Complementar		
1	GREENWOOD, N. N.; EARNSHAW, A. Chemistry of the elements. 2nd ed. Oxford: Butterworth-Heinemann, 199		
2	HOUSECROFT, C. E.; SHARPE, A. L. Química inorgânica. 4. ed. Rio de Janeiro: LTC, 2013. V.1		
	ATKINS, P. W; JONES, L. Princípios de química: questionando a vida moderna e o meio ambiente. 3. ed. Porto Alegre:		
	Bookman, 2006.		
4	ATKINS, P. W.; PAULA, J. de. Físico-química: fundamentos. 5. ed. Rio de Janeiro: LTC, 2011.		
5	MAHAN, B. M.; MYERS, R.J. Química: um curso universitário. São Paulo: Edgard Blucher, 1995.		

FOLHA DE ASSINATURAS

Emitido em 12/07/2023

PLANO DE ENSINO Nº 940/2023 - DMCAX (11.57.04)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 12/07/2023 20:11)
GUILHERME ALZAMORA MENDONCA
COORDENADOR
CEMIAX (11.51.17)
Matrícula: ###620#6

(Assinado digitalmente em 14/07/2023 20:08)
LEANDRO HENRIQUE SANTOS
PROFESSOR ENS BASICO TECN TECNOLOGICO
DMCAX (11.57.04)
Matrícula: ###560#3

Visualize o documento original em https://sig.cefetmg.br/documentos/ informando seu número: 940, ano: 2023, tipo: PLANO DE ENSINO, data de emissão: 12/07/2023 e o código de verificação: d531c4b91a